Total Synthesis of Nafuredin, a Selective NADH-fumarate Reductase Inhibitor

Daisuke Takano,† Tohru Nagamitsu,‡,§ Hideaki Ui,† Kazuro Shiomi,‡ Yuuichi Yamaguchi,‡ Rokuro Masuma,‡ Isao Kuwajima,‡,§ and Satoshi Oh**mura*,‡**

*School of Pharmaceutical Science, Kitasato Uni*V*ersity, Kitasato Institute for Life Sciences, Kitasato Uni*V*ersity, and CREST, The Japan Science and Technology Corporation (JST), 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan*

omura-s@kitasato.or.jp

Received May 1, 2001

Vol. 3, No. 15 ²²⁸⁹-**²²⁹¹**

ABSTRACT

Total synthesis of nafuredin, a selective NADH-fumarate reductase inhibitor, has been accomplished by a convergent approach. The C1−**C8 and C9**−**C18 segments were derived efficiently from D-glucose and (***S***)-(**−**)-2-methyl-1-butanol, respectively, coupled by stereoselective Julia olefination, and converted to nafuredin.**

In the course of our screening for NADH-fumarate reductase (NFRD) inhibitors, nafuredin (**1**), which is potentially a selective antiparasitic agent, $1,2$ was isolated from the fermentation broth of a fungal strain, *Aspergillus niger* FT-0554. Nafuredin (**1**) inhibited NFRD of *Ascaris suum* with an IC50 value of 12 nM. The target of **1** was revealed as complex I, and **1** showed selective inhibition of complex I in helminth mitochondria. In addition, **1** exerted anthelmintic activity against *Haemonchus contortus* in in vivo trials with sheep.1 These useful biological activities of **1** attracted our attention and prompted us to undertake the total synthetic study. We previously reported the elucidation of the absolute configuration of **1** by degradation and synthetic studies.3 In this Letter, we wish to report the first total synthesis of nafuredin (**1**).

We envisioned a convergent approach toward nafuredin (1) via a stereoselective one-pot Julia olefination⁴ between sulfone **3** and aldehyde **4** followed by appropriate functional group elaboration of the resulting **2** (Scheme 1). Requisite stereocontrol on the lactol moiety of **3** could be performed by using D-glucose derivative **7** previously prepared in our laboratory,³ and use of commercially available (S) - $(-)$ -2methyl-1-butanol **6** would allow enantioselective construction of the side chain segment **4** via Wittig olefination and Evans alkylation.

On the basis of the synthetic plan, we initially prepared aldehyde **4** as follows (Scheme 2). The starting material **6** was converted to the known (14*E*)-alcohol **8** in 50% overall yield by a slight modification of Kitahara's procedure,⁵ e.g., oxidation with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO),6 Wittig olefination, and DIBAL reduction. Allylic oxidation of 8 with $MnO₂$ followed by Wittig olefination with (1-carboethoxyethylidene)triphenylphosphorane afforded the desired (12*E*,14*E*)-dienyl ester **9** in 62% yield (two steps).

[†] School of Pharmaceutical Science, Kitasato University.

[‡] Kitasato Institute for Life Sciences, Kitasato University.

 $\,$ CREST.

⁽¹⁾ Ohmura, S.; Miyadera, H.; Ui, H.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Nagamitsu, T.; Takano, D.; Sunazuka, T.; Harder, A.; Kölbl, H.; Namikoshi, M.; Miyoshi, H.; Sakamoto, K.; Kita, K. *Proc. Natl. Acad. Sci. U.S.A.* **²⁰⁰¹**, *⁹⁸*, 60-62.

⁽²⁾ Ui, H.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Nagamitsu, T.; Takano, D.; Sunazuka, T.; Namikoshi, M.; Ohmura, S. *J. Antibiot.* **²⁰⁰¹**, *⁵⁴*, 234-238.

⁽³⁾ Takano, D.; Nagamitsu, T.; Ui, H.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Kuwajima, I.; Ohmura, S. *Tetrahedron Lett.* **²⁰⁰¹**, *⁴²*, 3017- 3020.

^{(4) (}a) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. *Tetrahedron Lett.* **¹⁹⁹¹**, *³²*, 1175-1178. (b) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. *Synlett* **¹⁹⁹⁸**, *¹*, 26-28.

⁽⁵⁾ Akao, H.; Kiyota, H.; Nakajima, T.; Kitahara, T. *Tetrahedron* **1999**, *⁵⁵*, 7757-7770.

⁽⁶⁾ Portonovo, P.; Liang, B.; Joullie´, M. M. *Tetrahedron: Asymmetry* **¹⁹⁹⁹**, *¹⁰*, 1451-1455.

DIBAL reduction of the ester **9** and acetylation of the resulting allyl alcohol furnished acetate **10**, quantitatively. Treatment of **10** with diethyl malonate and sodium hydride in the presence of a catalytic amount of $Pd(PPh_3)_4$ led to diester **11** quantitatively, which was subjected to alkali hydrolysis to afford dicarboxylic acid **12**. Decarboxylation of **12** with copper(I) oxide7 gave monocarboxylic acid **13** in 71% overall yield from **11**. Acid **13** was converted to a mixed anhydride by treatment with pivaloyl chrolide and then acylated with (R) -4-benzyl-2-oxazolidinone⁸ to produce 5, quantitatively. Methylation of **5** with sodium hexamethyldisilazide (NaHMDS) and methyl iodide gave **14** in 85% yield with its epimer (5% yield). The absolute configuration of the newly introduced C10 methyl group was tentatively assigned as the desired *R* according to the empirical rule generally accepted⁹ and could be confirmed by completion of the total synthesis. Reductive removal 10 of the chiral auxiliary with LiBH4 and oxidation of the resulting alcohol 15 with Dess-Martin periodinane¹¹ afforded the desired aldehyde **4** in 85% overall yield.

 a (a) TEMPO, NaClO, KBr, CH₂Cl₂; (b) Ph₃P=CHCO₂Me, benzene, 50 °C; (c) DIBAL, CH₂Cl₂, -78 °C; (d) MnO₂, CH₂Cl₂; (e) $Ph_3P=CMeCO_2Et$, benzene, 50 °C; (f) DIBAL, CH₂Cl₂, -78 °C; (g) Ac₂O, Et₃N, catalytic DMAP, CH₂Cl₂; (h) diethyl malonate, NaH, catalytic Pd(PPh₃)₄, THF, 50 °C; (i) KOH, MeOH-H₂O; (j) Cu₂O, CH₃CN, reflux; (k) PivCl, Et₃N, THF, 0 °C, then (R)-4benzyl-2-oxazolidinone, *n*-BuLi, THF, -78 to 0 °C; (1) NaHMDS, MeI, THF, -78 °C ; (m) LiBH₄, EtOH (1.1 equiv), Et₂O, 0 °C; (n) Dess-Martin periodinane, CH₂Cl₂.

The sulfone 3 corresponding to the $C1-C8$ segment was prepared as illustrated in Scheme 3. Debenzylation of D-glucose derivative **7** by hydrogenolysis with palladium hydroxide led to triol **16** quantitatively. Protection of the primary alcohol as the TBS ether followed by treatment with TIPSOTf furnished β -TIPS glycoside 17 in 74% yield (two steps). Selective deprotection of the TBS ether was performed by treatment with the TBAF-BF₃ \cdot Et₂O complex,¹² giving diol **¹⁸** in 95% yield.13 Oxidation of **¹⁸** with Dess-Martin periodinane followed by Horner-Wadsworth-Emmons reaction of the corresponding aldehyde with allyl diethylphosphonoacetate, LiCl, and diisopropylethylamine¹⁴ afforded $(6E)$ - α , β -unsaturated allyl ester 19 in 75% yield (two

⁽⁷⁾ Toussaint, L.; Capdevielle, P.; Maumy, M. *Synthesis* **¹⁹⁸⁶**, 1029- 1031.

⁽⁸⁾ Evans, D. A.; Gaze, J. R.; Leighton, J. L. *J. Am. Chem. Soc*. **1992**, *¹¹⁴*, 9434-9453.

⁽⁹⁾ Evans, D. A.; Ennis, M. D.; Mathre, D. J. *J. Am. Chem. Soc*. **1982**, *¹⁰⁴*, 1737-1739. (10) Penning, T. D.; Djuric′, S. W.; Haack, R. A.; Kalish, V. J.;

Miyashiro, J. M.; Rowell, B. W.; Yu, S. S. *Synth. Commun.* **¹⁹⁹⁰**, *²⁰*, 307- 312.

⁽¹¹⁾ Dess, D. B.; Martin, J. C. *J. Org. Chem.* **¹⁹⁸³**, *⁴⁸*, 4155-4156.

⁽¹²⁾ Kawahara, S.; Wada, T.; Sekine, M. *Tetrahedron Lett*. **1996**, *37*, ⁵⁰⁹-512.

⁽¹³⁾ All attempts to convert the sterically hindered primary alcohol in **18** to Wittig reagent and aryl sulfone, which would allow the olefination at C6, were unsuccessful. These results led us to construct the sterically less hindered sulfone **3**.

⁽¹⁴⁾ Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* **1984**, *25*, 2183- 2186.

a (a) H₂, Pd(OH)₂, EtOH; (b) TBSCl, *i*-Pr₂NEt, DMF; (c) TIPSOTf, 2,6-lutidine, CH_2Cl_2 ; (d) TBAF, $BF_3 \cdot Et_2O$, CH_3CN ; (e) Dess-Martin periodinane, CH_2Cl_2 ; (f) $(EtO)_2P(O)CH_2CO_2allyl$, *i*-Pr₂NEt, LiCl, CH₃CN; (g) catalytic Pd(PPh₃)₄, NaBH₄, EtOH; (h) MeO2CCl, Et3N, THF, then LiAlH(*t*-BuO)3; (i) DEAD, PBu3, 1-phenyl-1*H*-tetrazole-5-thiol, THF; (j) H₂O₂, catalytic Mo₇O₂₄(NH₄)₆· $4H₂O$, EtOH.

steps). Deprotection of the allyl ester by treatment with a catalytic amount of $Pd(PPh_3)_4$ and sodium borohydride afforded carboxylic acid **20** quantitatively. Acid **20** was subjected to reduction with lithium tri-*tert*-butoxyaluminohydride through the formation of a mixed anhydride with methyl chloroformate to produce allyl alcohol **21** in 71% yield. Mitsunobu reaction¹⁵ of 21 with 1-phenyl-1H-tetrazole-5-thiol followed by oxidation with H_2O_2 in the presence of a molybdenum(VI) catalyst¹⁶ furnished the desired sulfone **3** in 96% yield (two steps).

Under the influence of potassium hexamethyldisilazide $(KHMDS, 2$ equiv in this case), 4^b the one-pot Julia olefination between **3** and **4** could be effected to provide the desired $(6E, 8E, 12E, 14E)$ -alcohol 2 in 79% yield as a single isomer¹⁷ (Scheme 4). Treatment of **2** with sodium hydride gave epoxide **22** in 99% yield. Epoxide **22** was subjected to DIBAL reduction in order to remove the benzoyl group, 18 and subsequent protection with allyl chloroformate furnished

 a ^{a}(a) KHMDS (2 equiv), THF, then **4**; (b) NaH, THF; (c) DIBAL, CH_2Cl_2 ; (d) AllocCl, DMAP, pyridine; (e) HF \cdot pyridine, THF; (f) Dess-Martin periodinane, CH₂Cl₂; (g) HCO₂H, Et₃N, catalytic $Pd(PPh₃)₄$, THF.

23 in 88% yield (two steps). The TIPS protecting group in **²³** was then removed by exposure to HF'pyridine, and the resulting lactol was oxidized with Dess-Martin periodinane to afford lactone **24** in 77% yield (two steps). Finally, removal of the allyloxycarbonyl group by treatment with $HCO₂H$ and Et₃N in the presence of a catalytic amount of Pd(PPh3)4 gave nafuredin (**1**) in 92% yield. Synthetic nafuredin (**1**) was identical with natural (**1**) in all respects $([\alpha]_D$, ¹H and ¹³C NMR, IR, FAB-MS, and inhibitory activity
against NERD) against NFRD).

In conclusion, we have achieved the first total synthesis of nafuredin. Investigations of the structure-activity relationship and biological studies of **1** are currently in progress.

Acknowledgment. H.U. acknowledges a Grant-in-Aid for Encouragement of Young Scientists from Japan Society for the Promotion of Science (12771373).

Supporting Information Available: Experimental procedures and characterization data for all compounds of the synthesis. This material is available free of charge via the Internet at http://pubs.acs.org.

OL010089T (15) Mitsunobu, O. *Synthesis* **¹⁹⁸¹**, 1-28. (16) Schultz, H. S.; Freyermuth, H. B.; Buc, S. R. *J. Org. Chem.* **1963**, *²⁸*, 1140-1142.

⁽¹⁷⁾ On warming up at this stage, epoxide formation could not be effected.

⁽¹⁸⁾ Attempts to remove the benzoyl group under various basic conditions at the final step in the total synthesis did not afford nafuredin (**1**) without decomposition.